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Abstract 

Effect of non-normality and measurement error on 

~

R (t) function has been studied. Numerical 

results are given to illustrate the mathematical findings.  
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1. Introduction 

 The reliability function considered in the present study, 
~

R (t), is the 

probability function that a given system or device will operate successfully for at least t 

time units. In reliability estimation for mean when standard deviation σ is known, it 

generally assumed that the sampled population is normal and observations are error 

free. On the basis of this assumption the reliability function for the mean is calculated. 

But in practice, most of the basic industrial variables do not satisfy these assumptions 

and hence one may doubt the validity of the inferences drawn from the reliability 

functions. To get a satisfactory result it is advocated that in such cases (i) to increase 

the sample size or (ii) to transform the variables so that transformed variate may 

approximately follow normal distribution. This may not be always feasible in practice 

as (i) the sample size may be fixed on so many other considerations (ii) it may be 

difficult to find a suitable transformation and to apply the transformation effectively. 

 

                 Among other important life distribution, one parameter gamma distribution 

is considered by Basu (1964) and he has obtained the UMVU estimator of component 

reliability. Baikunth Nath (1975) has extended the result given by Holla (1967) to the 

case of truncated gamma distribution. Proceeding in the lines of Sathe and Varde 

(1969) and Scheaffer (1976) has obtained UMVU estimator of mean time in service 

when the life time follows exponential and that of Laplace transformation in the case of 

gamma distribution. Assuming that X and Y are independent normal variable. Church 

and Harris (1977) have obtained the UMVU estimators of the reliability P [Y > X] in 

stress - strength model. Folks and Chhikara (1978) have found the estimator of 

reliability function using complete samples in the case of Inverse Gaussian distribution. 
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Rao-Blackwell and Lehman-Scheffe Theorem: Let T be sufficient for θ and let 

T1 be an unbiased estimator of ψ(θ) such that Var (T1| θ) is finite. Then E(T1|T=t ) = 

u(t) is independent of θ and 

(i) E [u(T)| θ] = ψ(θ), 
(ii) Var [u(T)| θ] ≤ Var [T1| θ]. 
If T is complete and sufficient for θ, then any function u (T) is uniformly minimum 

variance unbiased estimator (UMVUE) of its expectation.  

 

               In this paper an attempt has been made to study reliability estimation for mean 

under non-normal population and measurement error. The reliability function is derived 

by considering the first four terms of an Edgeworth series as the probability density 

function of the non-normal populations.  

 

2. Reliability Function for Non-Normal Distribution 
 The non-normal population considered here is supposed to be characterized by 

non-zero values of the standardized third and fourth cumulants. Since the effects of the 

higher - order term depending on 
2

34365 ,,,, λλλλλ  ... are assumed to be negligible, 

the population covered is only moderately non-normal. Too high values of λ3 and λ4 

can also not be permitted as they will make f (x) negative at one or both tails and will 

give the subsidiary modes. The values of λ3 and λ4 considered should within Barton and 

Dennis (1952) limits, which means that for such values the population is positive 

definite and unimodal. 

 Let µ and σ2
 denote the mean and variance of the true quality characteristics x 

and let λ3 = ( )1β  and λ4 = (β2 - 3) be the standardized third and fourth cumulants 

respectively. Assume all the higher order cumulants to be zero, so that, to the third 

approximation of the law of error, the frequency function of x is represented by the first 

four terms of an Edgeworth series. 

.
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The distribution of sample mean obtained from Gayen (1949) is  
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where )()( xνφ  denotes the v
th

 derivative of φ (x). Let ξ
σ

µ
=







 −

n

x

/
, then following 

Zacks and Even (1966) we obtained the reliability estimation as : 
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 We now examine the effect of the measurement error on the usual test 

criterion of single sampling plan described below :  

 Accept the lot if ,Ukx ≤+ σ  

 And reject otherwise, 

for a given set of values of the producer's risk α, consumer's risk β, Acceptable Quality 

Level (AQL) p1 and Lot Tolerance Proportion Defective (LTPD) p2, the values of n 

(size of sample) and k (acceptance number) are determined by the formulae 
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where 
21 pp

K,K  Kα and Kβ are determined by the equation  

 θ=
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π
∫
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θ
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,                                            (2.6) 

for different choices of fraction defective θ . If θ  is the proportion defective in the lot, 

we know that  

  .K
U

θ=
σ

µ−
                                                             (2.7) 

     

,)'(
72

)'(
24

)'(
6

)'(1)( )5(
2

36)3(44)2(33
~









++−Φ−= z

n
z

n
z

n
ztR φ

λ
ρφ

λ
ρφ

λ
ρ                

                                                                                                                                   (2.8) 

where 

 








 −

−
=

n

xt
z

p 1
1

'

2

2

ρ

σ
. 

 

 

 

 



74                                           Journal of Reliability and Statistical Studies, Dec. 2014, Vol. 7(2) 

Reliability curve for l3=0,l4=0

0

0.2

0.4

0.6

0.8

1

0 50 100

---t--->

R
e

li
a

b
il

it
y

 R
(t

)

r=infinity

r=2

r=4

Reliability curve for λ3=0.5,l4=2
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3. Illustration and Conclusions  
 This paper  has considered the problem of reliability estimation for mean 

under non-normal population and measurement error. In order to see how the normal 

theory reliability estimation is distorted in a situation of non-normality and 

measurement error, we consider a few specific values of λ3 and λ4, To discuss the 

problem a simple example, is cited below from Sinha and Kale (1979). 

 

Example  

 15 items were put on test and the failure times (in hours) were : 

13.4, 14.2, 28.8, 29.0, 29.8, 33.0, 37.8, 39.6, 43.4, 49.8, 54.8, 58.2, 67.4, 70.2, 91.2. 

 In the study of life-testing and reliability analysis one important approach has 

been to consider an underlying 'life' distribution and to find suitable estimates of the 

parameters of that distribution. For practical reasons a relevant problem would be to get 

an unbiased estimate of reliability.   Rao-Blackwell and Lehmann - Scheffe therorems 

are used to derive the minimum variance unbiased estimates of reliability for a 

distribution that has proved useful in life testing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Reliability Estimation for Measurement Error and Non-Normal 

Population for r = ∞∞∞∞.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Reliability Estimation for Measurement Error and Non-Normal 

Population for r = 2. 

 

(λλλλ3, λλλλ4) t 0 0 0

12 0.9505 0.9305 0.9452

21 0.8829 0.8554 0.8749

30 0.7642 0.7389 0.758

39 0.6025 0.5909 0.5987

48 0.4208 0.4286 0.4247

57 0.2515 0.2776 0.2579

66 0.1293 0.1563 0.1357

(λλλλ3, λλλλ4) t (0.5,2) (0.5,2.0) (0.5,2.0)

12 0.9471 0.9285 0.9422

21 0.883 0.856 0.8752

30 0.7704 0.743 0.7632

39 0.6115 0.5971 0.6069

48 0.4138 0.4232 0.4181

57 0.2502 0.2755 0.2563

66 0.1327 0.1575 0.1384
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Reliability curve for l3=0.5,l4=0.5
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Reliability curve for l3=-0.5,l4=0.5
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Table 3: Reliability Estimation for Measurement Error and Non-Normal 

Population for r = 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Reliability Estimation for Measurement Error and Non-Normal 

Population for r = 6.  
 

The values of 
~

R  (t) are given in Table1 to Table 4 for different values of λ3, 

λ4 and r (size of the measurement error). The reliability curves is drawn in Figure 1 to 

Figure 4 for different values of r. Visual comparison shows that 
~

R  (t) is not much for 

normal and non-normal population. The effect of kurtosis is negligible. As failure time 

increases the 
~

R  (t) decreases. As compare to non-normality the measurement error is 

quite serious on the reliability function. To a lepto-kurtic and positive skewness (λ3  >  

0and λ4   > 0 ), when normal-theory reliability function is compared an overall 

improvement is likely to result and for the values of λ4 of order 2 it will be really a 

marked improvement. Positive skewness tends to improve the reliability function only 

in a limited range of failure rate. However, the presence of both skewness and kurtosis 

(λλλλ3, λλλλ4) t (0.5, 0.5) (0.5, 0.5) (0.5, 0.5)

12 0.9469 0.9282 0.942

21 0.8815 0.8551 0.8738

30 0.7679 0.7419 0.7613

39 0.6103 0.5966 0.6059

48 0.4128 0.4228 0.4174

57 0.248 0.2744 0.2544

66 0.131 0.1566 0.1369

(λλλλ3, λλλλ4) t (-0.5, 

+0.5)

(-0.5, 

+0.5)

(-0.5, 

+0.5)

12 0.9546 0.9331 0.9489

21 0.885 0.8561 0.8766

30 0.761 0.7362 0.7551

39 0.5948 0.5853 0.5919

48 0.4289 0.4345 0.4322

57 0.2555 0.281 0.2618

66 0.1283 0.1564 0.1351
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would affect a 
~

R  (t) depends on the magnitudes of λ3 and λ4 in a particular case and 

their effects being additive. True values and random components are additive in nature. 
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